Euler characteristic. Orientatability

Sasha Patotski

Cornell University

ap744@cornell.edu

November 30, 2014

Suppose Σ is a surface, and G is an embedded graph. Then the Euler characteristic $\chi(\Sigma) := V - E + F$ is correctly defined.

Sketch of a proof:

Suppose Σ is a surface, and G is an embedded graph. Then the Euler characteristic $\chi(\Sigma) := V - E + F$ is correctly defined.

Sketch of a proof:

Any polygon can be triangulated.

Suppose Σ is a surface, and G is an embedded graph. Then the Euler characteristic $\chi(\Sigma) := V - E + F$ is correctly defined.

Sketch of a proof:

Any polygon can be triangulated.

Euler characteristic stays the same.

Suppose Σ is a surface, and G is an embedded graph. Then the Euler characteristic $\chi(\Sigma) := V - E + F$ is correctly defined.

Sketch of a proof:

Any polygon can be triangulated.

Euler characteristic stays the same.

Euler characteristic is invariant under barycentric subdivision (refinement).

Suppose Σ is a surface, and G is an embedded graph. Then the Euler characteristic $\chi(\Sigma) := V - E + F$ is correctly defined.

Sketch of a proof:

Any polygon can be triangulated.

Euler characteristic stays the same.

Euler characteristic is invariant under barycentric subdivision (refinement).

Euler characteristic is invariant under **coarsening**.

A **coarsening** of a triangulation T of Σ is 2-cell decomposition of Σ in which each 2-cell is a union of 2-cells from T.

A **coarsening** of a triangulation T of Σ is 2-cell decomposition of Σ in which each 2-cell is a union of 2-cells from T.

Euler characteristic is invariant under coarsening.

A **coarsening** of a triangulation T of Σ is 2-cell decomposition of Σ in which each 2-cell is a union of 2-cells from T.

Euler characteristic is invariant under coarsening.

Idea: have two triangulations T_1 and T_2 . We want to find a 2-cell decomposition, which is coarsening of some refinement of T_1 and is approximating T_2 .

A **coarsening** of a triangulation T of Σ is 2-cell decomposition of Σ in which each 2-cell is a union of 2-cells from T.

Euler characteristic is invariant under coarsening.

Idea: have two triangulations T_1 and T_2 . We want to find a 2-cell decomposition, which is coarsening of some refinement of T_1 and is approximating T_2 .

This would finish the proof.

A **coarsening** of a triangulation T of Σ is 2-cell decomposition of Σ in which each 2-cell is a union of 2-cells from T.

Euler characteristic is invariant under coarsening.

Idea: have two triangulations T_1 and T_2 . We want to find a 2-cell decomposition, which is coarsening of some refinement of T_1 and is approximating T_2 .

This would finish the proof.

Exercise: compute Euler characteristic of $\mathbb{R}P^2$, K^2 , T^2 , M^2 .

Attaching a Möbius strip

Attaching a handle:

Attaching a Möbius strip

Attaching a handle:

Attaching a Möbius band:

Question: How does $\chi(\Sigma)$ change when attaching a handle? When attaching a Möbius strip?

Question: How does $\chi(\Sigma)$ change when attaching a handle? When attaching a Möbius strip?

If Σ is Σ' with attached Möbius band, then

$$\chi(\Sigma) = \chi(\Sigma') + 1$$

Question: How does $\chi(\Sigma)$ change when attaching a handle? When attaching a Möbius strip?

If Σ is Σ' with attached Möbius band, then

$$\chi(\Sigma) = \chi(\Sigma') + 1$$

If Σ is Σ'' with attached handle, then

$$\chi(\Sigma) = \chi(\Sigma'') + 2$$

A **triangulation** of a surface Σ is an embedding of a graph G into Σ such that all faces are triangles.

Definition

A triangulation is **orientable** if all faces can be oriented in a **coherent** way:

Definition

Similarly for any 2-cell decomposition of Σ .

Sasha Patotski (Cornell University)

Euler characteristic. Orientatability

November 30, 2014 6 / 10

Surface Σ is called **orientable** if there exists orientable triangulation of Σ .

э

Surface Σ is called **orientable** if there exists orientable triangulation of Σ .

Theorem

The following are equivalent:

- Σ is orientable;
- 2 any triangulation is orientable;
- **3** any 2-cell decomposition is orientable.

The following are equivalent:

- Σ is orientable;
- any triangulation is orientable;
- **3** any 2-cell decomposition is orientable.

"Proof:"

The following are equivalent:

- Σ is orientable;
- any triangulation is orientable;

3 any 2-cell decomposition is orientable.

"Proof:"

```
Easy to see 2 \Leftrightarrow 3 and 2 \Rightarrow 1.
```

The following are equivalent:

- Σ is orientable;
- any triangulation is orientable;

3 any 2-cell decomposition is orientable.

"Proof:"

```
Easy to see 2 \Leftrightarrow 3 and 2 \Rightarrow 1.
```

Orientability is invariant under barycentric subdivision.

The following are equivalent:

- Σ is orientable;
- any triangulation is orientable;

3 any 2-cell decomposition is orientable.

"Proof:"

```
Easy to see 2 \Leftrightarrow 3 and 2 \Rightarrow 1.
```

Orientability is invariant under barycentric subdivision.

Orientability is invariant under coarsening.

Which of the following surfaces are orientable?

Lemma

Sphere with one handle and one Möbius band is homeomorphic to a sphere with 3 Möbius bands.

Proof:

